Posted on Leave a comment

Cut Cost, Not Quality, with Reconditioned Inserts from GWS

 

If you’re a high-volume production type facility, getting as much value as possible out of your cutting tool inserts on long runs is essential.  So, what if you could find a source of high-quality cutting tool inserts at half the price?  That’s exactly what happens when you take advantage of our Tool Reconditioning services.  Beyond the initial cost savings of being able to use the inserts 2 to 3, or even more times, our regrinding operation offers value-added benefits you won’t find anywhere else. Reduced lead times, inventory management and cloud-based tracking are other ways to benefit from our regrinding process.  Most importantly, the service you get will be tailor-made to your needs.  Let’s take a closer look at how it all comes together.

Quality

Let’s set the record straight right up front.  Reconditioning inserts does not mean taking a step down in quality.  Quite the contrary.  The GWS Tool Recondition program regrinds your worn out, chipped and used inserts back to newly manufactured tool quality.  When you put one of the reconditioned inserts into your CNC, you can machine with confidence.

Reconditioning Tips

A PCD or CBN tipped insert can generally be re-sharpened 2 to 3 times.  After that the substrate (body) of the insert may start to be degraded from the heating and cooling cycle during the brazing process.  The most common styles that we recondition are ISO standard as well as most standard and special milling inserts, both carbide and steel bodied.  We can do multi-cornered inserts, but usually these are only for CBN inserts, and PCD inserts are normally only single tipped.

Choose a Process

Depending on your needs and the applications, there are three ways to add new life to your old inserts.  The first is to shim and regrind. With this method, the PCD/CBN tip is removed and then placed back into the original body with shim stock placed behind the tip.

reconditioned inserts - PCD-Tipped Carbide Inserts
PCD-Tipped Carbide Inserts
 

This will “push” the tip out from the body and the overhanging (damaged from use) material will be ground away, to re-establish  a new cutting edge by utilizing the un-used material for a brand new cutting edge that will be ground to the original dimensions of the new insert.

Another approach is to re-tip the inserts, by replacing the worn tip with a brand new PCD or CBN tip. This will allow the edge length of the tip to be the exact length of the original insert.  In some applications, the edge length is critical and must be maintained.  This is one of the reasons that a re-tipped insert may be needed as opposed to the Shim and Regrind. The re-tipping process is slightly more expensive due to the new material which is being introduced, but is still roughly 30% less expensive than a brand new insert.

If you use a variety of insert sizes in sequence in your shop, a succession technique may work for you.  This is most often used in conjunction with ceramic inserts, usually whisker-reinforced and other types of ceramic.  This can be used with PCD or CBN inserts that are solid or “full top” configurations.  With the succession, we start with the larger size (or feeder) insert and then will be ground to the next standard size.  For example, RNG-45 ground to a 4V to 3V to 2V.  If you do not utilize all the standard sizes, we can skip steps if needed, i.e. RNG-45 to a 3V, or 4V to a 2V and so on. These examples are for round inserts, but they can be utilized with grooving and some ISO standard inserts as well. Depending on the mix of inserts that you use, you may never have to buy a new smaller sized insert.  You can buy the large (feeder) insert, and use all down-sized/reground inserts for all of your smaller insert applications.

With each process, new coating and edge preparations (T-lands, or hones) are added as required. Whatever method works best for, our turnaround for reconditioned inserts is significantly less than for new tool manufacture.

Hidden Value

Besides seeing insert costs go down by half or more, our Tool Reconditioning program offers additional benefits that reduce inventory handling and carrying costs.

Our Tool Tracking System gives you a customized communication experience. We provide live to-the-minute information on your tool regrind process and keep everything accessible through the cloud. The GWS Portal, customized to your needs, allows you to track your current regrinds in real time and stay on top of your tool inventory.

Personalized service comes standard in the reconditioning process as our technicians have the expertise to visually analyze each of your unique inserts and decide which can be shimmed and reground, which can be re-tipped and which should “fallout” (be scrapped). They can accurately predict the number of times your tool can be reground, which reduces the need for new tool purchases and helps you avoid rush charges.

We also provide custom laser etching/labeling on your reconditioned inserts for traceability and inventory management programs provided certain minimums are met.

As you can see by this article, we are offering not only an insert reconditioning service, but a whole new way to administer the tool consumption process. To discover all the ways we can help you save money and time managing your tool insert program, please contact us for a consultation.

Posted on Leave a comment

GWS Custom Inserts Last Longer by a Wide Margin

CBN custom inserts
Continually changing worn out cutting tools can be a real profit breaker. If you’re machining automotive and aerospace components made out of hardened steel or nickel-based alloys, you really know what we mean. How do you avoid the costly downtime and excessive tooling costs typically associated with these super-hard materials? Find yourself a tougher tool. We offer a full array of standard and custom turning inserts tipped with the hardest substances on Earth.

Cubic Boron Nitride

CBN comes in right behind diamonds on the hardness scale. Unlike other types of boron nitride, it exists as a cubic crystal lattice, like the crystalline structure of diamond. It’s the perfect choice for applications that require extreme wear resistance and toughness like hard turning, grooving and milling hardened steel and nickel alloys or roughing gray cast iron at high cutting speeds.

CBN custom inserts

We were once called in to consult with a large automotive manufacturer that was having difficulty machining clutch plates made out of powdered metal. The part was very intricate, with a lot of internal and external diameters that needed to be turned, with some grooving and interrupted cuts. Inserts from their current supplier lasted only 20 parts before they had to be replaced. Initial tests with our CBN product immediately bumped this up to 215 parts per insert.

Polycrystalline Diamond

Polycrystalline diamond (PCD) is diamond grit that has been bonded onto a carbide substrate under high-pressure, high-temperature conditions.

PCD custom inserts

It works best for abrasive non-ferrous composite material applications. Our PCD- tipped inserts (including intricate form tools), come in several extremely wear-resistant grades (so you don’t have to buy more PCD than you actually need.)

Expect a dramatic change in tool life when you switch to PCD. In our experience, the first tool life can yield savings of up to 30-50% when compared to carbide inserts.
Believe it or not, the savings don’t stop there. Frankly, PCD inserts are costly compared to their carbide relatives, so we purposefully design each of our tips so they can be brought back to life multiple times by re-grinding. This gives you hours more cutting time for your initial investment.

How the Inserts Are Made

After receiving the raw material from a supplier (usually in the form of a 63mm to 75mm diameter disc), we cut out the desired tip and shape it using an electrical discharge machine (EDM). Features and edges are ground into the tip, which is then braised onto a carbide insert body. Using this process, we can take any standard turning insert and make it the top of the line for hardness.

Edge Preparation

Edge preparation is a big part of the performance of a CBN insert. A T-Land (or chamfer)is a common edge preparation we use for CBN inserts. Prior to edge preparation, a too typically has a 90 degree corner. Edge preparation removes this sharp angle which gives the insert a beveled edge.

For example, a 20 degree chamfer results in a “strong negative” cutting angle, with a rake of 70 degrees. The advantage of a chamfered tool is that the tool lasts significantly longer than a tool with a square or “positive” edge. Most companies offer standard angles of 20, 25 and 30 degrees. If 25 isn’t right, you have to make the leap to 30. This jump would probably not give you the ideal balance between strength and accuracy required for your application. At GWS, we have proprietary equipment that allows us to go from 10-45 degree angles and everywhere in between. We are the only company that has the ability (and the will) to give our customers this level of optimal customization.

Just the Right Composition

There are only a handful of companies that sell raw CBN and PCD. While our competitors usually work with only one, we order from a group of suppliers. The reason for this is that each source has a slightly different formula that may be a better match for any one of our customers. This “pick and choose” approach gives us more flexibility to provide a superior product for different applications. If your cutting tool inserts wear out too fast, contact us for a consultation and see the difference custom can make. When it comes to our customers, we don’t make do, we make better.